

Effect of fatigue in spatiotemporal parameters during 100 m front-crawl event monitored through 3D dual-media automatic tracking

Ribeiro J¹, Morais ST², Figueiredo P¹, de Jesus K¹, Vilas-Boas JP^{1,2}, Fernandes RJ^{1,2}

¹ University of Porto, Faculty of Sport, CIFI2D, Porto, Portugal ² University of Porto, Porto Biomechanics Laboratory (LABIOMEP), Porto, Portugal

Short high-intensity swimming events

Performance compromised

Decrease in power production

Changes in stroking biomechanical parameters

Toussaint et al. (2006)

Introduction | Materials and methods | Results and discussion | Conclusion

3D arm stroke kinematics

Video based systems (Manual digitizing)

Optoelectronic systems (Automatic tracking)

To analyse the effect of fatigue on 3D arm-stroke kinematics during a 100 m event monitored through a new 3D dual-media automatic tracking

Introduction | Materials and methods | Results and discussion | Conclusion

Data collection

- Subjects
 - 6 male swimmers (25.47 ± 4.69 years, 1.82 ± 0.04 m, 73.14 ± 6.14 kg)
- Protocol
 - 100 m front crawl maximal effort (push off start, open turns)
- Protocol recording
 - 8 underwater + 7 land cameras (Qualisys AB, Gothenburg, Sweden)

Data acquisition and processing

Dual media calibrated with Qualisys Track Manager™ version 2.7 (Qualisys AB, Gothenburg, Sweden)

Marker setup drag assessment

Marker setup drag assessment

Marker setup and variables

- Pelvis CM Velocity (m.s⁻¹)
- Stroke frequency (Hz)
- Stroke length (m)
- Hand CM velocity (m.s⁻¹)
- Hand CM Backward amplitude (m)
- Hand CM Amplitude slip (m)
- Hand CM depth (m)
- Hand CM width (m)
- Hand CM range (m)
- Index of coordination

Fatigue

Propulsive force

Craig *et al.* (1985) Keskinen and Komi (1993)

Attempt to maintain velocity

Chollet et al. (1997) Alberty et al. (2008)

Inability to maintain mechanical and muscular response

Aujouannet et al. (1997)

↓ lag time between propulsive phases

Alberty et al. (2005) Alberty et al. (2008)

Conclusions

Fatigue

- Swimming velocity declined \rightarrow SL and hand velocity decrease
- Swimmers adapted coordination path

Way to improve performance

- Useful for coaches and swimmers

Motion capture system

- Dual-media 3D tracking
- Realistic real-time data
- Pratical use for kinematic analysis in swimming

Thank you for your attention!

Acknowledgements

- SFRH/BD/81337/2011

Introduction | Materials and methods | Results and discussion | Conclusion