Field Application of an Omni PowerDuration Model in Swimming

Karli Musarra

Katie Slattery, Jamie Stanley, Stephen Crowcroft, Amy Woods
nswig
客UTS
6
swimming
australia

Overview

2. Methods

3. Insights

Background

- Mathematical modelling in human performance
- Emerging technological innovation (e.g., power meters)
- Improvements in training prescription, testing and athlete profiling (Clarke \& Skiba, 2013; Leo et al., 2021)

Anaerobic Power Reserve

 Model
Short Durations <2 mins

Critical Power (CP)/ W'

2-15 mins

Perronet \& Thibault Model

Long Durations >15 mins

3

The Omni-Domain Power Duration Model

- Developed using mean maximal power (MMP) data from trained cyclists (Puchowicz et al., 2020)

Leo et al., 2021

Project Aims

Aim

To determine whether the Omni-PD is an effective method to estimate the critical power (CP) and W' to characterise a swimmer's physiological capacity and quantify performance.

Objectives

1. Internal validation of model to compare goodness of fit for different equations of $\mathrm{CS} / \mathrm{D}^{\prime}$.
2. Determine level of agreement between Omni-PD and pre-existing methods of calculating $\mathrm{CS} / \mathrm{D}^{\prime}$.
3. External Validation of CS/D' calculated using the Omni-PD against race performances within a 1month window.

5

Data Collection

- Participants
- 15 athletes, male and female, age 16-24 years old.
- Members of the Swimming NSW Performance Pathway - Flippers Squad
- Highly trained / National Level (McKay et al., 2022)

Pragmatic Data Analysis

How do the different CS equations/inputs differ?

Does a 2-parameter CS/D' agree with 12×25 's test and 2000m velocity?

Can critical power/ omni-PD be used to predict race performance?

Initial Findings

How do the different CS equations/inputs differ?

- $25 \mathrm{~m} \mathrm{TT}, 200 \mathrm{~m}$ TT, 400 m TT and 1000 m TT used to fit $\mathrm{CS} / \mathrm{D}^{\prime}$ model
- Observations

1/time model using a combination of 200, 400 and 1000 m TT appears to give lowest RMSE

Combinations of only 2 TT's appear to give a similar CS value to the $1 /$ time model ($+/-0.1 \mathrm{~ms}^{-1}$)

Critical Speed							
Inputs				Model	CS	D'	RMSE
25	200	400	1000	3-hyp	1.31	25.58	3.51
25	200	400	1000	2-hyp	1.32	20.93	18.75
25	200	400	1000	Lin	1.33	13.75	6.72
25	200	400	1000	1/time	1.38	6.58	0.04
25	200	400		2-hyp	1.33	17.31	20.98
25	200	400		Lin	1.37	9.08	5.49
25	200	400		1/time	1.4	6.26	0.04
25	200		1000	2-hyp	1.32	19.05	22.91
25	200		1000	Lin	1.33	12.35	8.25
25	200		1000	1/time	1.38	6.54	0.06
25		400	1000	2-hyp	1.32	21.2	26.19
25		400	1000	Lin	1.34	10.78	7.36
25		400	1000	1/time	1.35	6.82	0.02
	200	400	1000	2-hyp	1.32	21.39	7.12
	200	400	1000	Lin	1.32	0.81	0.76
	200	400	1000	1/tim	1.32	20.19	0.01
25	200			Lin	1.43	5.85	
25	200			1/time	142	5.85	
25		400		Lin	1. 7	6.59	
25		400		1/time	1. 7	6.59	
25			1000	Lin	1. 4	7.03	
25			1000	1/time	74	7.03	
	200	400				19.42	
	200	400		$1 / \mathrm{timf}$	1.33	9.42	
	200		1000	Lin	1.32	2. 29	
	200		1000	1/tim	1.32	2. 29	
		400	1000	Lin	1.32	1.87	
		400	1000	1/time	1.32	21.87	

Initial Findings

Level of Agreement with Pre-existing Methods

Does a 2-parameter CS/D' agree with 12×25 's test and 2000 m velocity?

CS Comparison			
	TT CS	$\mathbf{1 2 2 5}$ CS	2000m Vel.
Athlete 1	1.32		1.31
Athlete 2	1.35		1.33
Athlete 3	1.48		1.38
Athlete 4	1.22		1.21
Athlete 5	1.36	1.71	1.44
Athlete 6	1.29		
Athlete 7	1.29	1.74	
Athlete 8	1.43		
Athlete 9	1.37	1.72	
Athlete 10	1.33	1.64	1.38
Athlete 11	1.35	1.85	1.43
Athlete 12	1.33		1.32
Athlete 13	1.41		1.45
Athlete 14	1.34	1.63	
Athlete 15	1.34	1.70	

D' $^{\prime}$ Comparison		
	TT D'	$\mathbf{1 2 2 5} \mathbf{D}^{\prime}$
Athlete 1	20.19	
Athlete 2	26.6	
Athlete 3	23.61	
Athlete 4	27.71	
Athlete 5	37.56	21.21
Athlete 6	28.16	
Athlete 7	28.16	12.03
Athlete 8	9.25	
Athlete 9	36.46	27.27
Athlete 10	27.2	12.19
Athlete 11	39.24	21.63
Athlete 12	19.39	
Athlete 13	26.22	
Athlete 14	34.52	24.69
Athlete 15	36.45	22.51

9

Initial Findings

Level of Agreement with Pre-existing Methods

Does a 2-parameter CS/D' agree with 12×25 's test and 2000 m velocity?

CS Comparison			
	TT CS	$\mathbf{1 2 2 5}$ CS	$\mathbf{2 0 0 0 m}$ Vel.
Athlete 1	1.32		1.31
Athlete 2	1.35		1.33
Athlete 3	1.48		1.38
Athlete 4	1.22		1.21
Athlete 5	1.36	1.71	1.44
Athlete 6	1.29		
Athlete 7	1.29	1.74	
Athlete 8	1.43		
Athlete 9	1.37	1.72	
Athlete 10	1.33	1.64	1.38
Athlete 11	1.35	1.85	1.43
Athlete 12	1.33		1.32
Athlete 13	1.41		1.45
Athlete 14	1.34	1.63	
Athlete 15	1.34	1.70	

D' $^{\prime}$ Comparison		
	TT D'	$\mathbf{1 2 2 5} \mathbf{D}^{\mathbf{\prime}}$
Athlete 1	20.19	
Athlete 2	26.6	
Athlete 3	23.61	
Athlete 4	27.71	
Athlete 5	37.56	21.21
Athlete 6	28.16	
Athlete 7	28.16	12.03
Athlete 8	9.25	
Athlete 9	36.46	27.27
Athlete 10	27.2	12.19
Athlete 11	39.24	21.63
Athlete 12	19.39	
Athlete 13	26.22	
Athlete 14	34.52	24.69
Athlete 15	36.45	22.51

Initial Findings

Can Critical Power / Omni-PD be used to predict race performance?

- Best race performance from NSW Senior State Champs
- Determined by World Record Ratio (WRR)
- Transformed all data into metabolic power (Capelli et al., 1998)
- N.B. Including TT Results
- Used CP/W' values to predict metabolic power for best event

11

Initial Findings

Can Critical Power / Omni-PD be used to predict race performance?

Case Study A: Middle Distance Athlete				
Best Event:	200m FS			
Time(s):	127.82			
Power (w):	414			
Model Inputs	CP watts	W' kJ	200m FS Pred. watts	Δ Actual vs pred.
Time Trial Data	246	16.3	374	-10\%
Race Result Data	301	15.3	420	1\%

Case Study B: Sprint Athlete				
Best Event:	100m FS			
Time(s):	50.58			
Power (w):	831			
	CP	W'	100m FS Pred.	Δ Actual vs pred.
Model Inputs	watts	kJ	watts	\%
Time Trial Data	269	28.1	826	-1\%
Race Result Data	455	14.5	741	-11\%

Initial Findings

Can Critical Power / Omni-PD be used to predict race performance?

Case Study B: Sprint Athlete

Best Event:	100 m FS
Time(s):	50.58
Power (w):	831

13

Limitations

